반응형
정의
등차수열의 합은 연속하는 항들 간의 차이가 일정한 수열의 합을 말합니다. 등차수열의 합을 구하는 공식을 사용하여 1부터 n까지의 합을 계산할 수 있습니다.
사용 방법
등차수열의 합을 구하기 위해서는 다음과 같은 공식을 사용합니다:
(첫 번째 항 + 마지막 항) × 항의 개수 / 2
a: 시작값
b: 종료값
c: 공차
공차: 등차수열에서 연속하는 항들 간의 차이
수학 예제
1부터 10까지의 합을 구한다고 한다면,
a: 시작값= 1
b: 종료값= 10
c: 공차= +1
이므로 대입을 한다면 아래와 같습니다.
장점
- 등차수열의 합 공식은 간단하고 직관적입니다.
- 큰 수의 합을 빠르게 계산할 수 있습니다.
- 일반적인 형태의 등차수열에 대해 적용 가능합니다.
단점
- 이 공식은 등차수열에만 적용 가능하며, 다른 유형의 수열에는 적용할 수 없습니다.
- 항의 개수를 알아야 공식을 사용할 수 있습니다.
자바 예제
public class ArithmeticSeriesSum {
public static void main(String[] args) {
int start = 1;
int end = 10;
int commonDifference = 1;
int sum = (start + end) * ((end - start) / commonDifference + 1) / 2;
System.out.println("1부터 10까지의 합: " + sum);
}
}
반응형